Comment
Share
Q)

# Discuss the continuity of the following functions $(a)\;f(x)=\sin x+\cos x$

This question has multiple parts. Therefore each part has been answered as a separate question on Clay6.com

Comment
A)
Toolbox:
• $\sin(A+B)=\sin A\cos B+\cos A\sin B$
• If $f$ is a real function on a subset of the real numbers and $c$ be a point in the domain of $f$, then $f$ is continuous at $c$ if $\lim\limits_{\large x\to c} f(x) = f(c)$.
Step 1:
$f(x)=\sin x+\cos x$
Multiply and divide by $\sqrt 2$
$\qquad=\sqrt 2[\large\frac{1}{\sqrt 2}$$\sin x+\large\frac{1}{\sqrt 2}$$\cos x]$
$\qquad=\sqrt 2[\cos\large\frac{\pi}{4}$$\sin x+\cos x\sin\large\frac{\pi}{4}] Step 2: It is of the form \sin(A+B)=\sin A\cos B+\cos A\sin B \Rightarrow we get \sqrt 2\sin(x+\large\frac{\pi}{4}) At x=a where a\in R LHL=\lim\limits_{\large x\to a^-}f(x)=\lim\limits_{\large a^-\to 0}\sqrt 2\sin(x+\large\frac{\pi}{4}) \qquad\qquad\qquad=\lim\limits_{\large h\to 0}\sqrt 2\sin(a-h+\large\frac{\pi}{4}) \qquad\qquad\qquad=\sqrt 2\lim\limits_{\large h\to 0}\sin(a+\large\frac{\pi}{4})$$\cos h-\cos(a+\large\frac{\pi}{4})$$\sin h] \sin(A-B)=\sin A\cos B-\cos A\sin B \qquad\qquad\qquad=\sqrt 2\sin(a+\large\frac{\pi}{4})$$\cos 0-\sqrt 2\cos(a+\large\frac{\pi}{4})$
$\qquad\qquad\qquad=\sqrt 2\sin[a+\large\frac{\pi}{4}]$
Step 3:
RHL=$\lim\limits_{\large x\to a^+}f(x)=\lim\limits_{\large x\to a^+}\sqrt 2\sin(x+\large\frac{\pi}{4})$
$\qquad\qquad\qquad=\lim\limits_{\large h\to 0}\sqrt 2\sin(a+h+\large\frac{\pi}{4})$
$\qquad\qquad\qquad=\sqrt 2\lim\limits_{\large h\to 0}\sin(a+\large\frac{\pi}{4})$$\cos h+\cos(a+\large\frac{\pi}{4})$$\sin h]$
$\sin(A+B)=\sin A\cos B+\cos A\sin B$
$\qquad\qquad\qquad=\sqrt 2\sin(a+\large\frac{\pi}{4})$$\cos 0+\sin 0\cos(a+\large\frac{\pi}{4})$
Step 4:
$f(a)=\sqrt 2\sin(a+\large\frac{\pi}{4})$
LHL=RHL=f(a)
Hence $f(x)$ is continuous at all points.