Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Discuss the continuity of the following functions $(c)\;f(x)=\sin x.\cos x$

This question has multiple parts. Therefore each part has been answered as a separate question on Clay6.com

Can you answer this question?

1 Answer

0 votes
  • $\sin 2A=2\sin A\cos A$
Step 1:
Here $f(x)=\sin x\cos x$
Multiply and divide by 2
$f(x)=\large\frac{1}{2}$$\times 2\sin x\cos x$
$\qquad=\large\frac{1}{2}$$\sin 2x$
We know that $\sin 2A=2\sin A\cos A$
Step 2:
At $x=a$ where $a\in R$
LHL =$\lim\limits_{x\to a^-}f(x)=\lim\limits_{x\to a^-}\large\frac{1}{2}$$\sin 2x$
$\qquad=\lim\limits_{h\to 0}\large\frac{1}{2}$$\sin 2(a-h)$
$\qquad=\large\frac{1}{2}$$[\sin 2a\cos 2h-\cos 2a\sin 2h]$
$\qquad=\large\frac{1}{2}$$[\sin 2a\cos 0-\cos 2a\sin 0]$
$\qquad=\large\frac{1}{2}$$\sin 2a$
Step 3:
LHL =$\lim\limits_{x\to a^+}f(x)=\lim\limits_{x\to a^-}\large\frac{1}{2}$$\sin 2x$
$\qquad=\lim\limits_{h\to 0}\large\frac{1}{2}$$\sin 2(a+h)$
$\qquad=\large\frac{1}{2}$$[\sin 2a\cos 2h+\cos 2a\sin 2h]$
$\qquad=\large\frac{1}{2}$$[\sin 2a\cos 0+\cos 2a\sin 0]$
$\qquad=\large\frac{1}{2}$$\sin 2a$
Step 4:
$f(a)=\large\frac{1}{2}$$\sin 2a$
$\therefore$ LHL =RHL=f(a).
Hence $f(x)$ is continuous at all points.
answered Sep 11, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App