Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the definite integrals\[\int\limits_0^\frac{\pi}{4}\frac{\sin x\cos x}{\cos^4x+\sin^4x}dx\]

Can you answer this question?

1 Answer

0 votes
  • (i)f(x) is an integral function and we substitute f(x) for t, then $f'(x)dx=dt,$ hence $\int f(x)dx=\int t.dt$
  • (ii)$\int \frac{dx}{x^2+a^2}=\frac{1}{a}\tan ^{-1}(x/a)+c$
Given $\int\limits_0^\frac{\pi}{4}\frac{\sin x\cos x}{\cos^4x+\sin^4x}dx$
Multiply and divide by $\cos ^4 x$
$I=\Large\int\limits_0^\frac{\pi}{4}\frac{\frac{\sin x\cos x}{\cos^4x}}{\frac{\cos ^4x+\sin^4x}{cos ^4x}}$
But we know $\frac{\sin x}{\cos x}=\tan x\; and \;\frac{1}{\cos x}=\sec x $
Hence $\large\int\limits_0^\frac{\pi}{4}\frac{\tan x\sec ^2x}{1+\tan ^4x}dx$
Let $\tan ^2 x=t$ on differentiating w.r.t x ,
$2\tan x.\sec^2x dx=dt\qquad=>\tan x \sec^2xdx=dt/2$
This limits also change when we substitute t,
When $x=0,t=\tan^2 0=0$
When $ x=\frac{\pi}{4},t=\tan ^2 \frac{\pi}{4}=1$
Therefore $I=\frac{1}{2}\int _0^1 \frac{dt}{1+t^2}$
This is of the form $\int \frac{dx}{x^2+a^2}=\frac{1}{a}\tan ^{-1}(x/a)+c$
Therefore $\frac{1}{2}\int_0^1 \frac{dt}{1+t^2}=\frac{1}{2}[\tan ^{-1}(t)]_0^1+c$
On applying limits,$\frac{1}{2}[\tan^{-1}-\tan ^{-1}(0)]$
But $\tan^{-1}=\frac{\pi}{4}$
$=\frac{1}{2} \times \frac{\pi}{4}=\frac{\pi}{8}$
Hence $I=\frac{\pi}{8}$


answered Feb 19, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App