Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function\[\int\frac{\sqrt{x^2+1}[log(x^2+1)-2logx]}{x^4}\]

Can you answer this question?

1 Answer

0 votes
  • (i)If an integral function $f(x)=t,$ then $f'(x)dx=dt$ hence the integral function is $\int f(x)dx=\int t.dt$
  • (ii)$log a-lod b=log |a/b|+c$
  • (iii)$2 log x=logx^2$
  • (iv) $\int udv=uv-\int vdu$
Given $I=\int\frac{\sqrt{x^2+1}[log(x^2+1)-2logx]}{x^4}dx$
Consider $\frac{\sqrt{x^2+1}[log(x^2+1)-2logx]}{x^4}$
We can write this as
$=\frac{\sqrt{x^2+1}}{x^4} \bigg[log (x^2+1)-log x^2 \bigg]\qquad(2 log x = log x^2)$
But $log (x^2+1)-log x^2=log \frac{x^2+1}{x^2}$
Hence $=\frac{\sqrt{x^2+1}}{x^4} \bigg[log \frac{x^2+1}{x^2} \bigg]$
$=\frac{\sqrt{x^2+1}}{x^4} \bigg[log (1+\frac{1}{x^2}) \bigg]$
$=\frac{1}{x^3}\sqrt{\frac{x^2+1}{x^2}} \bigg[log (1+\frac{1}{x^2}) \bigg]$
$=\frac{1}{x^3}\sqrt{1+\frac{1}{x^2}} \bigg[log (1+\frac{1}{x^2}) \bigg]$
$I=\int\frac{1}{x^3}\sqrt{1+\frac{1}{x^2}} \bigg[log (1+\frac{1}{x^2}) \bigg]dx$
Let $(1+\frac{1}{x^2})=t$
On differentiating w.r.t. x we get
$-\frac{2}{3}dx=dt\qquad =>\frac{dt}{x^3}=-\frac{dt}{2}$
Now substituting t and dt,
$I=-\frac{1}{2}\int \sqrt t \;log t\; dt$
This is of the form $\int udv$
we know $\int udv=uv-\int vdu$
Let $u=log t,$differentiating w.r.t t
$du=\frac{1}{t} dt$
Let $dv=t^{1/2}dt.$ on integrating
Substituting for u,v,du and dv we get,
Substituting for t we get,
$\frac{1}{3}(1+\frac{1}{x^2})^{3/2} log(1+\frac{1}{x^2})-\frac{2}{9}(1+\frac{1}{x^2})^{3/2}+c$
$=\frac{1}{3}\bigg[(1+\frac{1}{x^2})^{3/2} log(1+\frac{1}{x^2})-\frac{2}{3}(1+\frac{1}{x^2})^{3/2}\bigg]+c$
$I=\frac{1}{3}(1+\frac{1}{x^2})^{3/2} \bigg[ log(1+\frac{1}{x^2})-\frac{2}{3}\bigg]+c$


answered Feb 18, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App