Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function $\int\large\frac{2+\sin2x}{1+\cos2x}$$e^x$

Can you answer this question?

1 Answer

0 votes
  • $\int e^x[f(x)+f'(x)]dx=e^x[f(x)]+c$
  • $\frac{1}{\cos^2x}=\sec^2x$
  • $\sin 2x=2\sin x\cos x$
  • $ 1+\cos 2x=2 \cos ^2x$
Step 1:
Given $\large\int\frac{2+\sin2x}{1+\cos2x}$$e^x$
Consider $2+\sin 2x$
we know $\sin 2x=2\sin x \cos x$
Therefore $2+2\sin x\cos x=2(1+\sin x\cos x)$
Consider $1+ \cos 2x$
we know $\cos 2x=2 \cos^2x-1$
Therefore $ 1+\cos 2x=1+2 \cos ^2x-1=2 \cos ^2x$
Therefore $ I=\int\large \frac{2(1+\sin x \cos x)}{2(\cos^2x)}dx$
Step 2:
On seperating the terms we get ,
$I=\int e^x\bigg[\large\frac{1}{\cos ^2x}+\frac{\sin x \cos x}{\cos ^2x}\bigg]$$dx$
But we know $\large\frac{1}{\cos ^2x}=$$\sec ^2x$ and $\large\frac{\sin x}{\cos x}=$$\tan x$
Hence $I=\int e^x[\tan x+\sec^2]dx$
Step 3:
Let $f(x)=\tan x$
Therefore $f'(x)=\sec ^2x$
we know $\int e^x[f(x)+f'(x)]dx=e^x(f(x))+c$
Therefore $ I=e^x \tan x+c$
answered Sep 12, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App