logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

In a poisson distribution if $P(X=2)=P(X=3)$ then the value of its parameter $\lambda$ is

\[\begin{array}{1 1}(1)6&(2)2\\(3)3&(4)0\end{array}\]

Can you answer this question?
 
 

1 Answer

0 votes
$P(X=x)=\large\frac{e^{- \lambda } \lambda^x}{x!}$
$P(X=2)=\large\frac{e^{- \lambda } \lambda^2}{2!}$
$P(X=3)=\large\frac{e^{- \lambda } \lambda^3}{3!}$
$P(X=2) =P(X=3)$
$\large\frac{e^{- \lambda } \lambda^2}{2!}=\large\frac{e^{- \lambda } \lambda^3}{3!}$
$\large\frac{1}{1.2} =\frac{\lambda}{1.2.3}$
=> $\lambda=3$
Hence 3 is the correct answer.
answered May 23, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...