logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function\[\int\frac{\cos x}{\sqrt{4-\sin^2x}}\]

$\begin{array}{1 1}\sin^{-1}\bigg(\large\frac{\sin x}{2}\bigg)+c \\\cos^{-1}\bigg(\large\frac{\sin x}{2}\bigg)+c \\\sin^{-1}\bigg(\large\frac{\cos x}{2}\bigg)+c \\ \cos^{-1}\bigg(\large\frac{\cos x}{2}\bigg)+c \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • (i) if given $I=\int f(x)dx,$ let $f(x)=t,$ then $f'(x)dx=dt$,hence $\int f(x)dx=\int t.dt$
  • (ii)$\int \frac{dx}{\sqrt {x^2-a^2}}=\sin ^{-1}(\frac{x}{a})+c$
Given $I=\int\frac{\cos x}{\sqrt{4-\sin^2x}}dx$
 
Let $\sin x=t$
 
on integrating we get
 
$\cos x dx=dt$
 
Hence on substituting t and dt we get,
 
$I=\int \large\frac{dt}{\sqrt{2^2-t^2}}$
 
On integrating we get,
 
This is of the form $\int \large\frac{dt}{\sqrt{2^2-x^2}}$
 
$=\sin ^{-1}(\frac{x}{a})+c$
 
Therefore $I=\sin^{-1}(\frac{t}{2})$
 
Substituting for t we get $\sin^{-1}\bigg(\large\frac{\sin x}{2}\bigg)+c$
 
Therefore $I=\sin^{-1}\bigg(\large\frac{\sin x}{2}\bigg)+c$

 

 

answered Feb 16, 2013 by meena.p
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...