Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Choose the correct answer in the value of $\int\limits_0^\frac{\pi}{2}log\bigg(\frac{\large 4+3\sin x}{\large 4+3\cos x}\bigg)dx$ is

$\begin{array}{1 1}(a)\;2 \\ (b)\;\large\frac{3}{4} \\ (c)\;0 \\ (d)\;-2 \end{array} $

Can you answer this question?

1 Answer

0 votes
  • (i)$\int \limits_a^bf(x)dx=F(b)-F(a)$
  • (ii)$\int \limits_0^a f(x)dx=\int \limits_0^a f(a-x)dx$
Given $I=\int\limits_0^\frac{\pi}{2}log\bigg[\frac{\large 4+3\sin x}{\large 4+3\cos x}\bigg]dx-----(1)$
Now applying property $\int \limits_0^a f(x)dx=\int \limits_0^a f(a-x)dx$
$I=\int\limits_0^\frac{\pi}{2}log\bigg[\frac{\large 4+3\sin(\frac{\pi}{2}-x)}{\large 4+3\cos (\frac{\pi}{2}-x)}\bigg]dx$
But $ \sin (\frac{\pi}{2}-x)=\cos x \;and\; \cos(\frac{\pi}{2}-x)=\sin x$
$I=\int\limits_0^\frac{\pi}{2}log\bigg[\frac{\large 4+3\cos x}{\large 4+3\sin x}\bigg]dx-----(2)$
Adding equ(1) and equ(2)
$2I=\int\limits_0^\frac{\pi}{2}\bigg(log\bigg[\frac{\large 4+3\sin x}{\large 4+3\cos x}\bigg]+log\bigg[\frac{\large 4+3\cos x}{\large 4+3\sin x}\bigg]\bigg)dx$
But $log(\frac{a}{b})+log(\frac{c}{d})=log(\frac{a}{b} \times \frac{c}{d}),$similarly
$2I=\int\limits_0^\frac{\pi}{2}log\bigg(\frac{\large 4+3\sin x}{\large 4+3\cos x} \times \frac{\large 4+3\cos x}{\large 4+3\sin x}\bigg)dx$
$\int \limits_0^{\frac{\pi}{2}} log 1 dx$
But $log1=0$
Therfore $2I=0$
Hence the correct answer is C
answered Feb 14, 2013 by meena.p
edited Apr 29 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App