Step 1:
$z^2=(0,1)=i$
Therefore $z=\sqrt i=x+iy$
Squaring both sides we get
$i=(x^2-y^2)+2xyi$
Equating the real and imaginary parts separately
$x^2-y^2=0$-----(1)
$2xy=1$-----(2)
$2xy>0\Rightarrow x$ and $y$ are of the same sign.
Step 2:
Now $x^2+y^2=\sqrt{(x^2-y^2)^2+4x^2y^2}$
$x^2+y^2=1$----(3)
Solving (1) and (3)
$x^2=y^2=\large\frac{1}{2}$
$x=y=\pm\large\frac{1}{\sqrt 2}$
Therefore the roots are $\large\frac{1}{\sqrt 2}+\frac{i}{\sqrt 2},\frac{-1}{\sqrt 2}-\frac{i}{\sqrt 2}$