Ask Questions, Get Answers

Home  >>  TN XII Math  >>  Complex Numbers

If $z^2=(0,1)$ find $z$.

1 Answer

  • If $z=a+ib$ then $\bar{z}=a-ib$
  • $\mid z\mid=\sqrt{a^2+b^2}$
  • $z^{-1}=\large\frac{a-ib}{a^2+b^2}$
  • $z\bar{z}=a^2+b^2$
  • Also $Re(z)=a$,$Im(z)=b$
  • If $a+ib=c+id$ then $a=c$ and $b=d$
  • (i.e) if $z_1=z_2$,then $Re(z_1)=Re(z_2),Im(z_1)=Im(z_2)$
Step 1:
Therefore $z=\sqrt i=x+iy$
Squaring both sides we get
Equating the real and imaginary parts separately
$2xy>0\Rightarrow x$ and $y$ are of the same sign.
Step 2:
Now $x^2+y^2=\sqrt{(x^2-y^2)^2+4x^2y^2}$
Solving (1) and (3)
$x=y=\pm\large\frac{1}{\sqrt 2}$
Therefore the roots are $\large\frac{1}{\sqrt 2}+\frac{i}{\sqrt 2},\frac{-1}{\sqrt 2}-\frac{i}{\sqrt 2}$
answered Jun 7, 2013 by sreemathi.v

Related questions