Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Choose the correct answer in the value of $\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2}(x^3+x\cos x+\tan^5x+1)dx$ is


Can you answer this question?

1 Answer

0 votes
  • (i)$\int \limits_a^bf(x)dx=F(b)-F(a)$
  • (ii)If $f(-x)=-f(x)$ it is an odd function then $ \int \limits_0^a f(x)dx=0$
  • (iii)If $f(-x)=-f(x)$ it is an odd function then $ \int \limits_0^a f(x)dx=2 \int \limits_0^a f(x)dx$
Given $I=\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2}(x^3+x\cos x+\tan^5x+1)dx$
On seperating the term
$\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2}(x^3dx+\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2}x\cos x+\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2}\tan^5x+\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2}1dx$
Consider $x^3;(-x)^3=-x^3$
Hence it is an odd function
Therefore $\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2} x^3dx=0$
Consider $ xcosx\;-x\cos(-x)=-x\cos x$
Hence it is an odd function
Therefore $\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2} x \cos x=0$
Consider $\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2} \tan ^5 x.\tan ^5(-x)=-\tan ^5x$
It is an odd function
Hence $\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2} \tan ^5x=0$
Therefore $ I=0+0+0+0+2\int \limits_0^{\frac{\pi}{2}}dx$
On Integrating
On applying limits
Correct answer is C


answered Feb 14, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App