Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  TN XII Math  >>  Complex Numbers
0 votes

$P$ represents the variable complex number $z$.Find the locus of $P$,if $Re\bigg(\large\frac{z-1}{z+i}\bigg)$$=1$

This is the third part of the multi-part Q8.

Can you answer this question?

1 Answer

0 votes
  • If $z=a+ib$ then $\bar{z}=a-ib$.
  • $\mid z\mid=\sqrt{a^2+b^2}$
  • $z^{-1}=\large\frac{a-ib}{a^2+b^2}$
  • $z\bar{z}=a^2+b^2$
  • Also $Re(z)=a,Im(z)=b$
  • If $z_1=a+ib,z_2=c+id$
  • $z_1z_2=(a+ib)(c+id)=(ac-bd)+i(ad+bc)$
  • $\mid z_1z_2\mid=\mid z_1\mid\mid z_2\mid$
Step 1:
$P$ represents the variable complex number z.
Let $z=x+iy$
Step 2:
$\bigg(\large\frac{x-1+iy}{x+i(y+1)}\bigg)=\bigg(\large\frac{(x-1)+iy}{x+i(y+1)}\bigg)\times\bigg( \large\frac{x-i(y+1)}{x-i(y+1)}\bigg)$
Step 3:
The real part of the expression is equal to 1
Therefore $\large\frac{(x-1)x+y(y+1)}{x^2+(y+1)^2}$$=1$
The locus is a straight line.
answered Jun 10, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App