Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  TN XII Math  >>  Complex Numbers
0 votes

If $\cos \alpha +\cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$, prove that $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = 0$

This is the third part of the multi-part Q3.

Can you answer this question?

1 Answer

0 votes
  • From De moivre's theorem we have
  • (i) $(\cos\theta+i\sin\theta)^n=\cos n\theta+i\sin n\theta,n\in Q$
  • (ii) $(\cos\theta+i\sin\theta)^{-n}=\cos n\theta-i\sin n\theta$
  • (iii) $(\cos\theta-i\sin\theta)^n=\cos n\theta-i\sin n\theta$
  • (iv) $(\sin \theta+i\cos \theta)^n=[\cos(\large\frac{\pi}{2}$$-\theta)+i\sin(\large\frac{\pi}{2}$$-\theta)]^n=\cos n(\large\frac{\pi}{2}$$-\theta)+i\sin n(\large\frac{\pi}{2}$$-\theta)$
  • $e^{i\theta}=\cos\theta+i\sin\theta$
  • $e^{-i\theta}=\cos\theta-i\sin\theta$,also written as $\cos\theta$ and $\cos(-\theta)$
Step 1:
Now consider $e^{\large -i\alpha},e^{\large -i\beta},e^{\large -i\gamma}$.
(i.e) $\cos\alpha-i\sin\alpha,\cos\beta-i\sin\beta,\cos\gamma-i\sin\gamma$ which represent $\large\frac{1}{a},\frac{1}{b},\frac{1}{c}$.
We can see $\large\frac{1}{a}$$+\large\frac{1}{b}$$+\large\frac{1}{c}$$=0$
$\Rightarrow \large\frac{ab+bc+ca}{abc}$$=0$
If $ab+bc+ca=0$ we have $(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca=0$
Step 2:
$\Rightarrow a^2+b^2+c^2=0$
(i.e) $e^{\large i2\alpha}+e^{\large i2\beta}+e^{\large i2\gamma}=0$
We know that $e^{i\theta}=\cos\theta+i\sin\theta$
$\cos 2\alpha+i\sin 2\alpha+\cos 2\beta+i\sin 2\beta+\cos 2\gamma+i\sin 2\gamma=0$
$(\cos 2\alpha+\cos 2\beta+\cos 2\gamma)+i(\sin 2\alpha+\sin 2\beta+\sin 2\gamma)=0$
From this we have
$\cos 2\alpha+\cos 2\beta+\cos 2\gamma=0$
Hence proved.
answered Jun 11, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App