logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  TN XII Math  >>  Complex Numbers
0 votes

If $x=a+b$,$y=a\omega+b\omega^2,z=a\omega^2+b\omega$ show that (ii) $x^3+y^3+z^3=3(a^3+b^3)$ where $\omega$ is the complex cube root of unity.

This is the second part of the multi-part question Q2

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • If $\omega$ is a cube root of unity then $\omega^3=1$ and $1+\omega+\omega^2=0$
Step 1:
$x=a+b,y=a\omega+b\omega^2,z=a\omega^2+b\omega$
$x+y+z=a+b+a\omega+b\omega^2+a\omega^2+b\omega$
$\qquad\;\;\;\;\;\;=a(1+\omega+\omega^2)+b(1+\omega+\omega^2)$
We know that $(1+\omega+\omega^2)=0$
$\qquad\;\;\;\;\;\;=0$
Step 2:
$x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)+3xyz$
We know that $x+y+z=0$
Therefore $x^3+y^3+z^3=3xyz$
We know that $xyz=a^3+b^3$
$\Rightarrow 3(a^3+b^3)$
Therefore $x^3+y^3+z^3=3(a^3+b^3)$
Hence proved.
answered Jun 12, 2013 by sreemathi.v
edited Jun 12, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...