logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

By using the properties of definite integrals,evaluate the integral\[\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2}\sin^7\;x\;dx\]

$\begin{array}{1 1} \frac{\pi}{2} \\ 0 \\ \frac{\pi}{4} \\ \pi \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • (i)$\int\limits_a^b f(x)dx=F(b)-F(a)$
  • If $ f(-x)=-f(x)$ then the function is an odd function. and $\int \limits_{-a}^af(x)=0$
  • If $ f(-x)=-f(x)$ then the function is an even function. and $\int \limits_{-a}^af(x)=2\int \limits_0^a f(x)$
Given $I=\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2}\sin^7\;x\;dx$
 
Now $\sin ^7(-x)=(-\sin x)^7=-\sin^7x$
 
Hence $ \sin^7x$ is an odd function.
 
Since is an odd function $\int\limits_{-a}^a f(x)=0$
 
Therefore $\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2}\sin^7\;x\;dx=0$

 

answered Feb 14, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...