Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

By using the properties of definite integrals,evaluate the integral\[\int\limits_0^\pi\frac{x\;dx}{1+\sin x}\]

Can you answer this question?

1 Answer

0 votes
  • (i)$\int\limits_a^b f(x)dx=F(b)-F(a)$
  • (ii)$\int \limits_0^af(x)dx=\int \limits_0^af(a-x)dx$
Given $I=\int\limits_0^\pi\frac{x\;dx}{1+\sin x}-----(1)$
Applying the property $\int \limits_0^af(x)dx=\int \limits_0^af(a-x)dx$
But $\sin(\pi -x)=\sin x$
$I=\int\limits_0^\pi\frac{(\pi-x)}{1+\sin x}dx-----(2)$
Adding equ (1) and equ(2)
$2I=\int\limits_0^\pi\frac{xdx}{1+\sin x}+\int\limits_0^\pi\frac{(\pi-x)}{1+\sin x}dx$
On simplifying we get,
$2I=\int\limits_0^\pi\frac{\pi}{1+\sin x}dx$
Multiply and divide by $(1-\sin x)$
$2I=\pi\int\limits_0^\pi\frac{(1-\sin x)}{1+\sin x)(1-\sin x)}dx$
$(1+\sin x)(1-\sin x)=1-\sin^2x=\cos ^2x$
Therefore $2I=\pi\int\limits_0^\pi\frac{1-\sin x}{\cos^2 x}$
On seperating the terms,
$2I=\pi\int\limits_0^\pi\large\frac{1}{\cos^2 x}-\int\limits_0^\pi\frac{\sin x}{\cos x}.\frac{1}{\cos x}dx$
$=\pi\int\limits_0^\pi \sec ^2x-\int \limits_0^\pi \sec x.\tan x$
On integrating we get
$2I=\pi\bigg\{[\tan x]_0^\pi -[\sec x]_0^\pi \bigg\}$
On applying limits,
$2I=\pi[(\tan \pi-\tan 0)-(\sec \pi-\sec 0)]$
But $\tan \pi=\tan 0=0$
and $\sec \pi=-1\;and\; \sec 0=1$
Now substituting these values,
Therefore $I=\pi$



answered Feb 14, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App