logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

By using the properties of definite integrals,evaluate the integral\[\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2}\sin^2\;x\;dx\]

$\begin{array}{1 1} \frac{\pi}{2} \\ \frac{\pi}{4} \\ \frac{\pi}{16}\\ \frac{\pi}{8} \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • (i)$\int\limits_a^b f(x)dx=F(b)-F(a)$
  • (ii)$ If \;f(-x)=-f(x)$ then it is an odd function
  • (iii)$If\;f(-x)=f(x),$ then it is an even function.
  • (iv) if the given function is an even function, then $\int \limits_{-a}^a f(x)dx=2\int \limits_0^af(x)dx$
  • (v) if the given function is an odd function, then $\int \limits_{-a}^a f(x)dx=0$
 
Given $I=\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2}\sin^2\;x\;dx$
 
$f(x)=\sin ^2 x;f(-x)=(-\sin x)^2=\sin^2x$
 
Hence the given function is an even function.
 
We know $\sin ^2x=\frac{1-\cos2x}{2}$
 
Therefore $\int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2}\bigg(\frac{1-\cos 2x}{2}\bigg)dx$
 
Since it is an even function
 
$I=2 \times 2 \frac{1}{2} \int\limits_\frac{\Large -\pi}{\Large 2}^\frac{\Large \pi}{\Large 2}(1-\cos 2x)dx$
 
$=\int \limits_0^{\frac{\pi}{2}} dx-\int \limits_0^{\frac{\pi}{2}}\cos 2x dx$
 
On integrating we get
 
$I=[x]_0^{\pi/2}-[\frac{\sin 2x}{2}]_0^{\pi/2}$
 
On applying limits we get,
 
$I=[\frac{\pi}{2}-0]-\frac{\pi}{2}[\sin 2.\frac{\pi}{2}-\sin 0]$
 
But $\sin \pi=\sin 0=0; $
 
Hence $I=\frac{\pi}{2}$

 

answered Feb 14, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...