Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

By using the properties of definite integrals, evaluate the integral $\int\limits_0^\frac{\Large \pi}{\Large 2}(2 \log \sin x-\log \sin 2x)\;dx$

This question has appeared in model paper 2012.

Can you answer this question?

1 Answer

0 votes
  • $m\log n=\log n^m$
  • $\log m-\log n=\log\large\frac{m}{n}$
  • $\sin 2x=2\sin x\cos x$
Step 1:
$I=\int_0^{\Large\frac{\pi}{2}}(2\log \sin x-\log \sin 2x)dx$
$\quad=\int_0^{\Large\frac{\pi}{2}}\log[\large\frac{\sin^2x}{\sin 2x}]$$dx$
$\log m-\log n=\log\large\frac{m}{n}$
$\quad=\int_0^{\Large\frac{\pi}{2}}\log \bigg(\large\frac{\sin^2x}{2\sin x\cos x}\bigg)$
$\quad=\int_0^{\Large\frac{\pi}{2}}\log\bigg(\large\frac{\tan x}{2}\bigg)dx$
$\quad=\int_0^{\Large\frac{\pi}{2}}\log(\tan x)-\log 2 dx$
$\quad=\int_0^{\Large\frac{\pi}{2}}\log(\tan x)-\int_0^{\Large\frac{\pi}{2}}\log 2 dx$
Step 2:
$I=I_1-(\log 2[x]_0^{\Large\frac{\pi}{2}}$------(1)
$\;\;=I_1-(\large\frac{\pi}{2}-0)$$\log 2$
Where $I_1=\int_0^{\Large\frac{\pi}{2}}\log(\tan x)dx$
We know that $\int_0^af(x)dx=\int_0^af(a-x)dx$
$I_1=\int_0^{\large\frac{\pi}{2}}\log(\cot x)dx$
Step 3:
On adding the above equations we get,
$2I=\int_0^{\Large\frac{\pi}{2}}\log(\tan x)+\log(\cot x)]dx$
$\int_0^{\large\frac{\pi}{2}}\log(\tan x\cot x)dx$
$\log m+\log n=\log (mn)$
Step 4:
On substituting the value of $I_1$ in equ(1) we get
$I=I_1-(\large\frac{\pi}{2}$$-0)\log 2$
$I=0-(\large\frac{\pi}{2}$$-0)\log 2$
$\;\;=-\large\frac{-\pi}{2}$$\log 2$
answered Sep 11, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App