Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

By using the properties of definite integrals,evaluate the integral\[\int\limits_0^\frac{\pi}{4} log (1+\tan x)\;dx\]

$\begin{array}{1 1} \frac{\pi}{8} \log 2 \\ \frac{\pi}{4} \log 16 \\ \frac{\pi}{8} \log 8 \\ \frac{\pi}{4} \log 8 \end{array} $

Can you answer this question?

1 Answer

0 votes
  • (i)$ \int \limits_a^b f(x)dx=F(b)-F(a)$
  • (ii)$\int \limits_0^a f(x)dx=\int \limits_0^a f(a-x)dx$
  • (iii)$\tan(A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
  • (iv)$\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$
Given I=$\int\limits_0^\frac{\pi}{4} log (1+\tan x)\;dx-----(1)$
By using the property $\int \limits_0^a f(x)dx=\int \limits_0^a f(a-x)dx$
I=$\int\limits_0^\frac{\pi}{4} log [(1+\tan (\frac{\pi}{4}-x)]\;dx$
Using $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$
$I=\int \limits_0^{\frac{\pi}{4}} log \bigg[1+\frac{\tan {\pi}{4}-\tan x}{1+\tan \frac{\pi}{4}.\tan x}\bigg]dx $
$I=\int \limits_0^{\frac{\pi}{4}} log \bigg[1+\frac{1-\tan x}{1+\tan x}\bigg]dx $
$=\int \limits_0^{\frac{\pi}{4}} log \frac{2}{(1+\tan x)}dx $
$log(\frac{a}{b})=log a-log b$ similarly
$I=\int \limits_0^{\frac{\pi}{4}}log 2dx-\int \limits_0^{\frac{\pi}{4}}log(1+\tan x)dx$
$=\int \limits_0^{\frac{\pi}{4}} log 2.dx-I$
Therefore $2I=\int \limits_0^{\frac{\pi}{4}} log 2.dx$
On integrating we get,
$ 2I=[log 2 (x)]_0^{\frac{\pi}{4}}$
Applying limits we get,
$2I=\log 2. (\pi/4)$
$=>2I=\frac{\pi}{4}\log 2$
Therefore $ I=\frac{\pi}{8} log 2$



answered Feb 13, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App