logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

By using the properties of definite integrals,evaluate the integral\[\int\limits_0^\frac{\pi}{2}\frac{\sin^\frac{3}{2}\;x\;dx}{\sin^\frac{3}{2}\;x+\cos^\frac{3}{2}\;x}\]

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • (i)$\int\limits_0^af(x)dx=\int\limits_0^af(a-x)dx$
  • (ii)$\sin(\frac{\pi}{2}-x)=\cos x$
  • (iii)$ \cos (\frac{\pi}{2}-x)=\sin x$
Given $\int\limits_0^\frac{\pi}{2}\large\frac{\sin^\frac{3}{2}\;x\;}{\sin^\frac{3}{2}\;x+\cos^\frac{3}{2}\;x}dx-----(1)$
 
By applying property $\int\limits_0^af(x)dx=\int\limits_0^af(a-x)dx$
 
$I=\int\limits_0^\frac{\pi}{2}\large\frac{\sin^\frac{3}{2}\;(\frac{\pi}{2}-x)\;}{\sin^\frac{3}{2}\;(\frac{\pi}{2}-x)+\cos^\frac{3}{2}\;(\frac{\pi}{2}-x)}$
 
But $ \sin(\frac{\pi}{2}-x)=\cos x$ and
 
$\cos(\frac{\pi}{2}-x)=\sin x$
 
Therefore $ I=\int\limits_0^\frac{\pi}{2}\large\frac{\cos^\frac{3}{2}\;x\;}{\cos^\frac{3}{2}\;x+\sin^\frac{3}{2}\;x}dx-----(2)$
 
Adding equ(1) and equ(2)
 
$ 2I=\int\limits_0^\frac{\pi}{2}\large\frac{\sin^{\frac{3}{2}}\;x+\cos ^{\frac{3}{2}}x\;}{\sin^\frac{3}{2}\;x+\cos^\frac{3}{2}\;x}dx$
 
$2I=\int \limits_0^{\frac{\pi}{2}}dx$
 
On integrating,
 
$2I=[x]_0^{\frac{\pi}{2}}$
 
On applying limits
 
$2I=\frac{\pi}{2}-0$
 
$ =\frac{\pi}{2}$
 
Therefore $ I=\frac{\pi}{4}$

 

 

answered Feb 13, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...