Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the integral using substitution\[\int\limits_0^\frac{\large \pi}{2}\frac{\sin x}{1+\cos^2x}dx\]

Can you answer this question?

1 Answer

0 votes
  • (i)$\int \limits_a^b f(x)dx=F(b)-F(a)$
  • Method of substitution:If $I=\int f(x)dx,Let f(x)=t\; then\; f'(x)dx=dt\; therefore\; I=\int t.dt$
  • (iii)$ \int \large \frac{\sin x}{1+x^2}dx=\tan^{-1}(x)$
Given $\int\limits_0^\frac{\large \pi}{2}\frac{\sin x}{1+\cos^2x}dx$
Let $\cos x=t,$ on differentiating with respect to x
$-\sin xdx=dt\qquad=>\sin x dx=-dt$
Now substituting t and dt,
$I=\int \limits_0^1 \large\frac{dt}{1+t^2} \;As\; x \to \pi/2,t \to 0$
$=-\int \limits_0^1\frac {dt}{1+t^2}$
This is of the form $ =\int\frac{dx}{x^2+a^2}=\frac{1}{a}\tan ^{-1}(\frac{x}{a})$
Here $a=1\;and\;x=t$
Therefore $ \int \limits_0^1\large\frac{dt}{1+t^2}=\tan^{-1}(t)$
On applying limits we get,


answered Feb 12, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App