Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Integrals
0 votes

Find the area of the region in the first quadrant enclosed by \(x\) - axis, line \(x = \sqrt {3}\: y\) and the circle \(x^2 + y^2 = 4.\)

$\begin{array}{1 1} \large \frac{\pi}{3} sq. units. \\ \large \frac{\pi}{6} sq. units. \\\large \frac{\pi}{9} sq. units. \\ \large \frac{\pi}{4} sq. units \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Area of the region bounded between a curve y=f(x) and a line is given by \[A=\int_a^by\;dx=\int_a^bf(x)\;dx \]
  • where a and b are the point of intersection of the line and curve.
  • To find the point of intersection,we can solve the two equations.
To find the area of the region bounded by the circle $x^2+y^2=4$ and $x=\sqrt 3y$ and the x-axis.
The required area of the region is given by the shaded portion in the fig.
To find the point of intersection ,let us solve the equation;
$x^2+y^2=4$-----(1) and $x=\sqrt 3y\Rightarrow x^2=3y^2$
$\Rightarrow \frac{x^2}{3}=y^2$--------(2)
substituting for $y^2$ in equ(1) we get
$x^2+\frac{x^2}{3}=4 \Rightarrow 3x^2+x^2=12$
$\Rightarrow 4x^2=12$
$\Rightarrow x^2=3$
$\Rightarrow x=\pm \sqrt 3$
If x=$\sqrt 3$ then y=1.
Hence we can take the limit as $\sqrt 3$ to 2 .since the radius of the circle is 2.
The required area $A=\int_\sqrt 3^2(y_1+y_2)dx$
where $y_1=\sqrt {4-x^2}$
$\;\;\;\;\;\;\;\;\;\;y_2$=area of the triangle.
$A=\int_\sqrt 3^2\sqrt {4-x^2}$+area of the triangle
on integrating $y_1$ we get,
$A=\begin{bmatrix}\frac{x}{2}\sqrt{4-x^2}+\frac{4}{2}\sin^{-1}(\frac{x}{2})\end{bmatrix}_\sqrt 3^2$
on applying the limits we get,
$A=\begin{bmatrix}\frac{2}{2}\sqrt{4-4}+\frac{4}{2}\sin^{-1}(\frac{2}{2})\end{bmatrix}-\begin{bmatrix}\frac{\sqrt 3}{2}\sqrt{4-3}+\frac{4}{2}\sin^{-1}(\frac{\sqrt 3}{2})\end{bmatrix}$
$A=\begin{bmatrix}0+2(\frac{\pi}{2})-\frac{\sqrt 3}{2}-2(\frac{\pi}{3})\end{bmatrix}$
$A\;\;\;=\begin{bmatrix}\pi-\frac{\sqrt 3}{2}-\frac{2\pi}{3}\end{bmatrix}=\begin{bmatrix}\frac{\pi}{3}-\frac{\sqrt 3}{2}\end{bmatrix}$------(3)
$y_2$=area of the triangle bounded between x-axis and the line $x=\sqrt 3y$
$\;\;\;=\frac{1}{2}\times \sqrt 3\times 1=\frac{\sqrt 3}{2}$-------(4)
Required area can be obtained by combining (3) and (4)
$A=\frac{\pi}{3}-\frac{\sqrt 3}{2}+\frac{\sqrt 3}{2}=\frac{\pi}{3}$ sq.units.
Hence the required area=$\Large \frac{\pi}{3}$ sq. units.
answered Dec 20, 2013 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App