Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Integrals
0 votes

Find the area of the smaller part of the circle \(x^2 + y^2 = a^2\) cut off by the line \( x =\Large { \frac{a}{\sqrt 2}}.\)

$\begin{array}{1 1} \large \frac{a^2}{2}\begin{bmatrix}\frac{\pi}{2}-1\end{bmatrix}sq.units. \\\large \frac{a^3}{3}\begin{bmatrix}\frac{\pi}{2}-1\end{bmatrix}sq.units . \\ \large \frac{a^2}{2}\begin{bmatrix}\frac{\pi}{4}-1\end{bmatrix}sq.units. \\ \large \frac{a^2}{2}\begin{bmatrix}\frac{\pi}{\sqrt 2}-1\end{bmatrix}sq.units. \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Area of the region bounded between a curve and a line is given by \[A=\int_a^by\;dx=\int_a^bf(x)\;dx\]
  • where a and b are the point of intersection of the line and the curve.
  • The point of intersection can be found by solving the two equations.
The area of the required region is the smaller part of the circle$x^2+y^2=a^2$,cut off by the line $x=\frac{a}{\sqrt 2}$
This is the shaded portion shown in the fig.
clearly the point of intersection is $(\frac{a}{\sqrt 2},\pm\frac{a}{\sqrt 2})$
Hence the required area is\[A=\int_\frac{a}{\sqrt 2}^ay \;dx=\int_\frac{a}{\sqrt 2}^a\sqrt {a^2-x^2} \;dx\]\[(x^2+y^2=a^2\Rightarrow y=\sqrt{a^2-x^2})\]
on integrating we get,
$\;\;\;=\begin{bmatrix}\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\big(\frac{x}{a}\big)\end{bmatrix}_\frac{a}{\sqrt 2}^a$
on applying limits we get,
$\;\;\;=\begin{bmatrix}\frac{a}{2}\sqrt{a^2-a^2}+\frac{a^2}{2}\sin^{-1}\big(\frac{a}{a}\big)-\frac{a}{2\sqrt2}\sqrt{a^2-\big(\frac{a}{\sqrt 2}\big)^2}-\frac{a^2}{2}\sin^{-1}\big(\frac{a}{a\sqrt 2}\big)\end{bmatrix}$
$\Rightarrow A=\frac{a^2}{2}\big(\frac{\pi}{2}\big)-\frac{a}{2\sqrt 2}.\frac{a}{\sqrt 2}-\frac{a^2}{2}\big(\frac{\pi}{4}\big)$
$\;\;\;\;\;\;\;=\frac{\pi a^2}{4}-\frac{a^2}{4}-\frac{\pi a^2}{8}$
$\;\;\;\;\;\;\;=\frac{a^2}{4}\begin{bmatrix}\frac{\pi}{2}-1\end{bmatrix}$ sq.units.
Hence the required area is $\frac{a^2}{2}\begin{bmatrix}\frac{\pi}{2}-1\end{bmatrix}$sq.units.
answered Dec 20, 2013 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App