Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the definite integral\[\int\limits_0^1(xe^x+\sin\frac{\pi\;x}{4})dx\]

$\begin{array}{1 1} 1+\large \frac{4}{\pi}-\frac{2 \sqrt 2}{\pi} \\1-\large \frac{4}{\pi}+\frac{2 \sqrt 2}{\pi} \\ 1-\large \frac{2}{\pi}+\frac{4 \sqrt 2}{\pi} \\ 1-\large \frac{2}{\pi}-\frac{2 \sqrt 4}{\pi} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • (i)$\int \limits_a^b f(x)dx=F(b)-f(a)$
  • (ii) Methods of integration by parts: $\int udv=uv-\int vdu$
  • (iii)$ \int \sin x dx=-\cos x+c$
Given $\int\limits_0^1(xe^x+\sin\frac{\pi\;x}{4})dx$
On seperating the terms
$I=\int \limits_0^1 xe^xdx+\int\limits_0^1\sin \frac{\pi x}{4}dx$
Consider $I_1=\int \limits_0^1 x e^xdx$
This is of the form $\int udv$
Where $ \int udv=uv-\int vdu$
Let u=x
On differentiating with respect to x,
Let $dv=e^xdx$
On integrating we get,
$\int \limits_0^1 xe^x=(xe^x)_0^1-\int \limits_0^1e^x dx$
On integrating we get
$ I_1=(xe^x)_0^1-(e^x)_0^1$
Consider $ I_2=\int \limits_0^1 \sin \frac{\pi}{4}x$
$=\frac{1}{\pi/4}(\cos \pi/4 x)_0^1$
$=(xe^x)_0^1-(e^x)_0^1+(-\frac{4}{\pi} \cos \frac{\pi}{4}x)_0^1$
On applying limits
$[1.e^1-0]-[e^1-e^0]+[(-\frac{4}{\pi}.\cos \frac{\pi}{4}-(-\frac{4}{\pi} \cos 0)]$
$e^0=1;\cos \frac{\pi}{4}=\frac{1}{\sqrt 2}; \cos 0=1$
Therefoer $ I=1-\frac{4}{\pi}.\frac{1}{\sqrt 2}+\frac{4}{\pi}$
$\int \limits _0^1 (xe^x+\sin \large\frac{\pi x}{4})dx=1+\frac{4}{\pi}-\frac{2 \sqrt 2}{\pi}$



answered Feb 12, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App