Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the definite integral\[\int\limits_1^2\frac{5x^2}{x^2+4x+3}\]

$\begin{array}{1 1} 5- \large \frac{5}{2}[9 \log(5/4)-\log(3/2)] \\ 5- \large \frac{5}{2}[7 \log(5/4)+\log(3/2)] \\5+ \large \frac{5}{2}[9 \log(5/4)+\log(3/2)]\\ 5- \large \frac{3}{2}[7 \log(5/4)-\log(5/2)] \end{array} $

Can you answer this question?

1 Answer

0 votes
  • (i)$\int \limits_a^bf(x)dx=F(b)-F(a)$
  • (ii)If the given rational function is improper in natture,then we can divide and split it into a proper rational function and then resolve it into partial fraction of the given form.
  • (iii)$\int \frac{dx}{(a+x)}=log(a+x)+c$
Given $\int\limits_1^2\large\frac{5x^2}{x^2+4x+3}$
The given function is an improper rational function. Hence on dividing we get
$\large\frac{20x+15}{x^2+4x+3}$ can be resolved as $ \large\frac{A}{(x+3)}+\frac{B}{(x+1)}$
Became $(x^2+4x+3)$ can be factorised as $(x+3)(x+1)$
Therefore $20x+15=A(x+1)+B(x+3)$
Equating the coefficient of x,
$ 20=A+B\;------(1)$
Equating the constant term,
On solving equation (1) and(2),
$\qquad 2B=-5$
Therefore $B=-\frac{5}{2}$
Substituting the value of B in equ(1)
Hence $A=\frac{45}{2}\;and\;B=-\frac{5}{2}$
Now substituting for A and B we get
On integtating we get
$\int \limits_1^2 \large\frac{5x^2}{x^2+4x+3}=\int \limits_1^2 5dx -\bigg[\int \limits_1^2 \frac{45}{2}\bigg(\frac{1}{x+3}\bigg)dx-\int
\limits_1^2 \frac{5}{2}\bigg(\frac{1}{x+1}\bigg)dx\bigg]$
$=\bigg[5x\bigg]_1^2-\large\frac{45}{2}[log(x+3)]_1^2+\frac{5}{2}[log (x+1)]_1^2$
On applying limits,
$[5 \times 2-5 \times 1]-\frac{45}{2}[log(x+3)-log(1+3)]-\frac{5}{2}[log(2+1)-log(1+1)]$
But we know $log(a)-log(b)=log(a/b)$
Therefore $ \int \limits_1^2 \large\frac{5x^2}{x^2+4x+3}=5-\frac{45}{2}[log(5/4)-log(3/2)]$
$ \int \limits_1^2 \large\frac{5x^2}{x^2+4x+3}=5-\frac{5}{2}[9log(5/4)-log(3/2)]$


answered Feb 11, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App