Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the definite integral\[\int\limits_0^1x\;e^{x^2}dx\]

Can you answer this question?

1 Answer

0 votes
  • (i)$ \int \limits_a^bf(x)dx=F(b)-F(a)$
  • (ii)If there are two functions u and v, and the integral function is of the form $\int udv,$then it can be solved by the method of integration by parts.$ \int udv=uv-\int vdu$
  • (iii)$\int e^x=e^x+c.$
Given $\int\limits_0^1x\;e^{x^2}dx$
Let $ x^2=t$
On differentiating we get w.r.t.x
Therefore $ xdx=dt/2$
Substituting $t_1$ and dt we get
$I=\frac{1}{2}\int \limits_0^1 e^t dt$
On integrating we get,
But $e^0=1$
$\int \limits_0^1 xe^xdx=\frac{1}{2}[e-1]$


answered Feb 11, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App