Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate the definite integral\[\int\limits_0^1\frac{2x+3}{5x^2+1}dx\]

$\begin{array}{1 1}\large \frac{1}{5} \log 6+\large \frac{3}{\sqrt 5}\tan^{-1}(\sqrt 5) \\ \large \frac{1}{5} \log 3-\large \frac{5}{\sqrt 3}\tan^{-1}(\sqrt 5) \\ \large \frac{1}{3} \log 3+\large \frac{5}{\sqrt 3}\tan^{-1}(\sqrt 3) \\ \large \frac{1}{3} \log 3-\large \frac{5}{\sqrt 3}\tan^{-1}(\sqrt 3)\end{array} $

Can you answer this question?

1 Answer

0 votes
  • (i)$\int \limits_a^b f(x)dx=F(b)-F(a)$
  • (ii)$\int \frac{1}{1+x^2}dx=\tan^{-1}+c$
  • (iii)Method of substitution $I= \int f(x)dx. let\;f(x)=t, then \;f'(x)dx=dt.\;Hence\; I=\int t.dt$
Given$ \int\limits_0^1\large\frac{2x+3}{5x^2+1}dx$
We can split the terms and write as
$I= \int\limits_0^1\large\frac{2x}{5x^2+1}+\int\limits_0^1\large\frac{3}{5x^2+1}dx$
Consider $I_1= \int\limits_0^1\large\frac{2x}{5x^2+1}$
Let $x^2+1=t$
On differentiating we get,
$5 \times 2xdx=dt$
But the limits change.when substituting for x.
when x=0,t=1
when x=1,t=6
Therefore $ I_1=\int \limits_1^6 \large\frac{dt/5}{t}=\frac{1}{5}\int \limits_1^6\frac{dt}{t}$
On integrating we get,
$\bigg[\frac{1}{5}log t\bigg]_1^6$
On applying the limits,
$\frac{1}{5}[log 6-log1]$
We know $loga-logb=log(a/b),$ similarly.
$\frac{1}{5} log(6/1)=\frac{1}{5} log 6$
Consider $I_2= \int\limits_0^1\large\frac{3dx}{5x^2+1}$
$=\frac{3}{5}\int\limits_0^1\large\frac{dx}{x^2+(\frac{1}{\sqrt 5})^2}$
This is of the form $ \int \large\frac{dx}{x^2+a^2}=\frac{1}{a}\tan^{-1}(\frac{x}{a})+c$
Therefore $I=\frac{3}{5}\int\limits_0^1\large\frac{dx}{x^2+(\frac{1}{\sqrt 5})^2)}=\bigg[\large\frac{3}{5} \times \frac{1}{\frac{1}{\sqrt 5}}$
$\tan ^{-1}(\frac{x}{\frac{1}{\sqrt 5}})\bigg]_0^1$
On applying limits,
$\bigg[\frac{3 \sqrt 5}{5} tan^{-1}(x\sqrt 5)\bigg]_0^1=\frac{3}{\sqrt 5}\tan ^{-1}(\sqrt 5)$
Therefore $I=I_1+I_2$
$\int \limits_0^1 \large\frac{2x+3}{5x^2+1}dx=\frac{1}{5} log 6+\frac{3}{\sqrt 5}\tan^{-1}(\sqrt 5)$
answered Feb 11, 2013 by meena.p
edited Apr 11, 2016 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App