logo

Ask Questions, Get Answers

X
 
Home  >>  JEEMAIN and NEET  >>  Physics  >>  Class11  >>  Motion in a Straight Line

Two particles start moving from the same point in a straight line. The first moves with constant velocity v and second moves with constant acceleration a. During the time that elapses before the second catches the first, the greatest distance between the particle is

\[(a)\;\frac{v^2}{a}\quad (b)\;\frac{v^2}{2a} \quad (c)\;\frac{2v^2}{a} \quad (d)\frac{v^2}{4a}\]

1 Answer

Let x be distance between particles after t seconds Then
I particle $x_1=vt$
II particle $x_2=\large\frac{1}{2}$$at^2$
$x=x_1-x_2$
$\quad=vt-\large\frac{1}{2} $$at^2$-----(1)
For x maximum
$\large\frac{dx}{dt}$$=0=>v-at=0$
$=>t=\large\frac{v}{a}$
Substituting value of t in (1)
$x=v \bigg(\large\frac{v}{a}\bigg)-\large\frac{1}{2} a \bigg(\frac{v}{a}\bigg)^2$
$\quad=\large\frac{v^2}{2a}$
Hence b is the correct answer

 

answered Jun 26, 2013 by meena.p
edited Jan 25, 2014 by meena.p
 

Related questions

...