logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Motion in a Plane
0 votes

The trajectory of a projectile in a vertical plane is $y=ax-bx^2$ where $a$ and $b$ are constants. The maximum height attained by the particle and the angle of projection from horizontal are

\[(a)\;\frac{b^2}{2a}, \tan ^{-1} (b)\quad (b)\;\frac{a^2}{4b},\tan ^{-1}(a) \quad (c)\;\frac{a^2}{b},\tan ^{-1} (2a) \quad (d)\;\frac{2a^2}{b},\tan ^{-1}(a)\]

Can you answer this question?
 
 

1 Answer

0 votes
$y=ax-bx^2$
for maximum height
$\large\frac{dy}{dx}$$=0$
$a-2bx=0$
$x=\large\frac{a}{2b}$
Therefore $y_{\large max}=a \bigg(\large\frac{a}{2b}\bigg)$$-b\bigg(\large\frac{a}{2b}\bigg)^2=\frac{a^2}{4b}$
angle of projection $\tan {\theta}=> at \;x=0$
$\bigg(\large\frac{dy}{dx}\bigg)_{x=0}=\large\frac{d}{dx}$$[ax-bx^2]\bigg|_{x=0}$
$\quad\qquad\qquad=a-2bx \bigg|_{x=0}$
$\qquad\qquad\quad=a$
Therfore $\tan \theta =a$
$\qquad \theta=\tan ^{-1} (a)$
Hence b is the correct answer. 

 

answered Jul 1, 2013 by meena.p
edited Jan 26, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...