Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Laws of Motion
0 votes

A pendulum is released from $\theta_0=60 ^{\circ}$. The rate of change of speed of bob at $\theta=30 ^{\circ}$ is $(g=10 m/s^2)$

\[(a)\;5 \sqrt 3\; m/s^2 \quad (b)\;5\; m/s^2 \quad (c)\;10\; m/s^2 \quad (d)\;2.5\; m/s^2\]

Can you answer this question?

1 Answer

0 votes
Answer: 5 m/s$^2$
Rate change of speed, $\large\frac{dv}{dt}$$=$ tangential acceleration $=\large\frac{\text{tangential force}}{\text{mass}}$
When $\theta=30^{\circ}$, tangential force is $mg\; \sin \theta$
Therefore $a=\large\frac{mg \sin 30}{m}$
$\qquad\qquad=10 \sin 30$
$\qquad\qquad=10 \times \frac{1}{2}$
$\qquad\qquad=5 m/s^2$
answered Jul 2, 2013 by meena.p
edited Aug 19, 2014 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App