Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Choose the correct answer in $ \Large \int \normalsize \sqrt{x^2-8x+7} \: dx$ is equal to\[ \begin{array}{l} (A)\frac{1}{2}(x-4)\sqrt{x^2-8x+7}+9\;log\mid x-4+\sqrt{x^2-8x+7}\mid + \; C \\ (B)\frac{1}{2}(x+4)\sqrt{x^2-8x+7}+9\;log\mid x+4+\sqrt{x^2-8x+7}\mid + \; C \\ (C) \frac{1}{2}(x-4)\sqrt{x^2-8x+7}-3\sqrt2log\mid x-4+\sqrt{x^2-8x+7}\mid+ \; C \\ (D)\frac{1}{2}(x-4)\sqrt{x^2-8x+7}-\frac{9}{2}\;log\mid x-4+\sqrt{x^2-8x+7}\mid + \; C \end{array}\]

Can you answer this question?

1 Answer

0 votes
  • $\int \sqrt{x^2-a^2}dx=\frac{x}{2}\sqrt{x^2-a^2}-\frac {a^2}{2}log |x+\sqrt{x^2-a^2}|+c$
Given $I=\int \sqrt{x^2-8x+7}dx$
Here we can split $ x^2-8x+7$ as $(x^2-8x+16)-16+7$
Therefore $I=\int [(x-4)^2-3^2]dx$
Clearly this is of the form $\sqrt{x^2-a^2}=$
Here in the place of x we have x-4 and in the place of a we have 3
Hence $\int\sqrt{x^2-8x+7} dx=\frac{(x-4)}{2}\sqrt{x^2-8x+7}-\frac{9}{2} log |(x-4)+\sqrt{x^2-8x+7}|+c$
Hence the correct answer is D


answered Feb 8, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App