logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Application of Integrals
0 votes

Find the area under the given curves and given lines: $ (i) \: y = x^2, x = 1, x = 2 \: and\: x - axis$

This is first part of multipart q1

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Area of a region bounded by the curve $y=f(x)$,$x$-axis and the lines $x=a,x=b$ is given by \[A=\int_a^b dA=\int_a^b yda=\int_a^bf(x)dx.\]
Step 1:
Given $f(x)=x^2,x=1,x=2$ ans $x$-axis
Using the information in the toolbox
we understand $A=\int_a^bf(x)dx$
Here $a=1$ and $b=2$ and $f(x)=x^2$
Therefore area $A=\int_1^2x^2dx$
$A=\begin{bmatrix}\large\frac{x^3}{3}\end{bmatrix}_1^2sq.units$
Step 2:
Applying the limits we get :
$A=\begin{bmatrix}\large\frac{2^3}{3}-\frac{1^3}{3}\end{bmatrix} sq.units.$
$\;\;\;=\begin{bmatrix}\large\frac{8}{3}-\frac{1}{3}\end{bmatrix}=\large\frac{7}{3}$sq.units
Hence the required area is $\large\frac{7}{3}$sq. units.
answered Dec 21, 2013 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...