Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Integrals

Choose the correct answer in $\int e^x\sec x(1+\tan x)\;dx$ equals

\begin{array}{1 1}(A)\;e^x\cos x+C\qquad(B)\;e^x\sec x+C\\(C)\;e^x\sin x+C\qquad(D)\;e^x\tan x+C\end{array}

1 Answer

  • (i) $\int e^x[f(x)+f'(x)]dx=e^x(f(x))+c$
  • (ii) $ \frac{d}{dx}(\sec x)=\sec x \tan x$
Given $I=\int e^x \sec x(1+\tan x)dx$
$\qquad=\int e^x [\sec x+\sec x tan x]dx$
Let $f(x)=\sec x$
On differentiating with respect to x,
$f'(x)=\sec x \tan x$
Therefore The integral function of the form
$\int e^x[f(x)+f'(x)]=e^x(f(x))+c$
Therefore $\int e^x[\sec x+\sec x \tan x ]dx=e^x \sec x +c$
Hence the correct answer is B


answered Feb 7, 2013 by meena.p