Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Integrals
0 votes

Using integration find the area of region bounded by the triangle whose vertices are $(-1, 0), (1, 3) $ and $(3, 2)$.

$\begin{array}{1 1}4 \\ 2\\ 6\\ 8 \end{array} $

Can you answer this question?

2 Answers

0 votes
  • Equation of a line when two points are given is\[\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}.\]
Given the vertices of the triangle which is formed by the intersection of three lines is A(-1,0),B(1,3) and C(3,2).
Let us now find the equation of the line segments AB,BC and AC of the triangle.
Equation of line segment AB is\[\frac{y-0}{3-0}=\frac{x+1}{1+1}\Rightarrow \frac{y}{3}=\frac{x+1}{2}\]
Area of the region bounded by this line and the x-axis is $y_1$.
on integrating we get $y_1=\frac{3}{2}[\frac{x^2}{2}+x]_{-1}^1.$
On applying limits we get,
$y_1=\frac{3}{2}[\frac{1}{2}+1-\frac{1}{2}+1]=3$ sq.units.
Equation of the line segment BC is \[\frac{y-3}{2-3}=\frac{x-1}{3-1}\]
$\Rightarrow y-3=\frac{(-1)(x-1)}{2} \Rightarrow y=\frac{-(x-1)}{2}+3$
Area of the region bounded by this line and x-axis is $y_2$.
Area of $y_2=\int_1^3y^2dx=\int_1^3\frac{1}{2}(-x+7)dx$
on integrating we get,
Area of $y_2=\frac{1}{2}[\frac{x^2}{2}+7x]_1^3$
on applying limits we get,
$\;\;\;\;\;\quad\;\;\;\;\;\;\;=5$ sq.units.
Equation of line AC is\[\frac{y-0}{2-0}=\frac{x+1}{3+1}\Rightarrow y=\frac{1}{2}(x+1)\]
The area bounded by this line and the x-axis is $y_3$.
Area of $y_3=\int_{-1}^3\frac{1}{2}(x+1)dx$
On integrating we get,
Area of $y_3=\frac{1}{2}[\frac{x^2}{2}+x]_{-1}^3$
on applying limits we get,
Area of $y_3=\frac{1}{2}[\frac{9}{2}+3-\frac{1}{2}+1]=4\;units.$
Now area of the required triangle is\[y_1+y_2-y_3.\]
$\Rightarrow A=3+5-4=4$ sq.units.
Hence the required area is 4 sq. units.


answered Jan 25, 2013 by sreemathi.v
0 votes
<div class="clay6-toolbox"><b>Toolbox:</b><ul><li class="clay6-basic" id="pr00">
If we are given two curves represented by y=f(x),y=g(x) where $f(x)\geq g(x)$ in [a,b],the point of intersection of two curves are given by x=a and x=b by taking common values of y from the equation of the two curves.</li></ul></div><div class="clay6-step-odd"><div class="clay6-advanced" id="pr10">
The curve $x^2=4y$ is the equation of the parabola with vertex at the origin and axis along y-axis and open upwards.</div><div class="clay6-basic" id="pr11">
Let $R_1$ be the region lying inside the parabola $x^2=4y\Rightarrow y=\frac{x^2}{4}$</div><div class="clay6-basic" id="pr12">
We have $4x^2+4y^2=9$</div><div class="clay6-basic" id="pr13">
$x^2+y^2=\frac{9}{4}\Rightarrow x^2+y^2=\frac{9}{4}\Rightarrow y^2=\frac{9}{4}-x^2$</div><div class="clay6-basic" id="pr14">
$y=\sqrt {\frac{9}{4}-x^2}$</div><div class="clay6-advanced" id="pr15">
Clearly this represents the equation of a circle with the centre at the origin and radius $\frac{3}{2}$.</div><div class="clay6-advanced" id="pr16">
Let $R_2$ be the region lying inside the circle.</div><div class="clay6-basic" id="pr17">
Hence the area of the required region is bounded by the parabola $x^2=4y$ and the circle $x^2+y^2=\frac{9}{4}.$</div><div class="clay6-basic" id="pr18">
The area of the required region is the shaded portion shown in the fig.</div><div class="clay6-image" id="pr19">http://clay6.com/mpaimg/1_test17.png</div></div><div class="clay6-step-even"><div class="clay6-advanced" id="pr20">
To find the point of intersection let us substitute $x^2=4y$ in the equation of the circle.</div><div class="clay6-basic" id="pr21">
$4y+y^2=\frac{9}{4}\Rightarrow 4y^2+16y-9=0$</div><div class="clay6-basic" id="pr22">
On factorising we get,</div><div class="clay6-basic" id="pr23">
(2y+9)(2y-1)=0</div><div class="clay6-basic" id="pr24">
$\Rightarrow x=\frac{-9}{2}$ or $y=\frac{1}{2}$.</div><div class="clay6-basic" id="pr25">
If $y=\frac{1}{2},x=\pm\sqrt 2$ and if $y=\frac{-9}{2},$x is imaginary.</div><div class="clay6-basic" id="pr26">
Hence the points of intersection are ($\sqrt 2,\frac{1}{2})(\sqrt 2,\frac{-1}{2}).$</div><div class="clay6-basic" id="pr27">
Clearly the curves are symmetrical about the x-axis.</div><div class="clay6-advanced" id="pr28">
Hence the required area is</div><div class="clay6-advanced" id="pr29">
$A=\int_0^\frac{1}{\sqrt 2}(R_2-R_1)dx$</div><div class="clay6-basic" id="pr210">
$\;\;\;=\int_0^\frac{1}{\sqrt 2}\frac{\sqrt {9-4x^2}}{2}-\int_0^\frac{1}{\sqrt 2}\frac{x^2}{4}dx$.</div><div class="clay6-basic" id="pr211">
$A=\frac{1}{2}\int_0^\frac{1}{sqrt 2}\sqrt {9-4x^2}-\frac{1}{4}\int_0^\sqrt 2x^2dx.$</div></div><div class="clay6-step-odd"><div class="clay6-basic" id="pr30">
On integrating we get,</div><div class="clay6-basic" id="pr31">
$\;\;\;\;=\frac{1}{2}.\frac{1}{2}\begin{bmatrix}\frac{2x}{2}\sqrt{9-4x^2}+\frac{9}{2}\sin^{-1}\frac{2x}{3}\end{bmatrix}_0^\sqrt 2-\frac{1}{4}\begin{bmatrix}\frac{x^3}{3}\end{bmatrix}_0^\sqrt 2$</div><div class="clay6-basic" id="pr32">
On applying the limits we get,</div><div class="clay6-basic" id="pr33">
$\;\;\;=\frac{1}{4}\begin{bmatrix}\sqrt 2\sqrt{9-8}+\frac{9}{2}\sin^{-1}\big(\frac{2\sqrt 2}{3}\big)\end{bmatrix}-\frac{1}{12}(\sqrt 2)^3$</div><div class="clay6-advanced" id="pr34">
$\;\;\;\;=\frac{\sqrt 2}{4}+\frac{9}{8}\sin^{-1}\big(\frac{2\sqrt 2}{3}\big)-\frac{\sqrt 2}{6}$.</div><div class="clay6-basic" id="pr35">
$\;\;\;=\frac{\sqrt 2}{12}+\frac{9}{8}\sin^{-1}\big(\frac{2\sqrt 2}{3}\big)$.</div><div class="clay6-advanced" id="pr36">
But since the curves are symmetrical about x-axis the required area is</div><div class="clay6-basic" id="pr37">
$A=2\begin{bmatrix}\frac{\sqrt 2}{12}+\frac{9}{8}\sin^{-1}\big(\frac{2\sqrt 2}{3}\big)\end{bmatrix}$.</div><div class="clay6-basic" id="pr38">
$\;\;\;=\frac{\sqrt 2}{6}+\frac{9}{4}\sin^{-1}\big(\frac{2\sqrt 2}{3}\big)$.</div><div class="clay6-basic" id="pr39">
Hence the required area is $\frac{\sqrt 2}{6}+\frac{9}{4}\sin^{-1}\big(\frac{2\sqrt 2}{3}\big)$.</div></div>
answered Dec 21, 2013 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App