Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Integrals
0 votes

Find the area of the region bounded by the curves \(y = x^2 + 2, y = x, \: x = 0\) and \(x = 3.\)

Can you answer this question?

1 Answer

0 votes
  • If we are given two curves represented by y=f(x);y=g(x),where $f(x)\geq g(x)$ in [a,b],the points of intersection of two curves are given by x=a and x=b,by taking common values of y from the equation of the two curves.
Given the equation of the curves are:
Here clearly $y=x^2+2$ represents a parabola with vertex at (0,2) and axis along positive direction of y-axis.The parabola is open upwards.
y=x is a line passing through the origin .
x=0 is y-axis and x=3 is a line parallel to y-axis at a distance of 3units from it.
Area of the required region is bounded by these curves and it is the shaded region as shown in the fig.
Required area is $A=\int_0^3(y_2-y_1)dx$
on integrating we get,
on applying the limits we get,
Hence the required area is $\frac{21}{2}$ sq.units.
answered Dec 21, 2013 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App