Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function $\sin^{-1}\bigg(\large\frac{2x}{1+x^2}\bigg)$

$\begin{array}{1 1} 2x \tan^{-1}x- \log |1+x^2|+c \\ 2x \cos^{-1}x- \log |1+x^2|+c \\2x \cos^{-1}x+ \log |1+x^2|+c \\ 2x \cos^{-1}x- \log |1-x^2|+c \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Let u and v be two functions,such that the integral function is of the form $\int vdu,$ then it can be solved by the method of integration by parts.
  • $\int udv=uv-\int vdu.$
  • $\frac{d}{dx}(\tan x)=\sec^2x$
  • $ \int \sec^2 x=\tan x+c.$
Step 1:
Let $I=\int\sin^{-1}\bigg(\large\frac{2x}{1+x^2}\bigg)$$dx$
Substitute $x=\tan\theta$ we get,
$I=\int \sin^{-1}\bigg(\large\frac{2\tan\theta}{1+\tan^2\theta}\bigg)$$dx$
We know that $\sin 2\theta=\large\frac{2\tan\theta}{1+\tan^2\theta}$
$\int \sin^{-1}(\sin 2\theta)dx$
$\Rightarrow \int\large\frac{1}{ \sin}\times$$ \sin2\theta dx$
$\Rightarrow 2\int \theta dx$
Step 2:
We have $x=\tan\theta$
By substituting the value of $\theta$ we get,
$2\int \tan^{-1}xdx=2\tan^{-1}x\int dx-2\int\large\frac{d}{dx}$$\tan^{-1}x\int dx]dx$
By using integration by parts,
$I=2\tan^{-1}x.x-2\int \bigg[\large\frac{1}{1+x^2}$$x\bigg]dx$
Step 3:
Put $1+x^2=t$
By differentiating with respect to $x$
$\Rightarrow 2x=\large\frac{dt}{dx}$
Step 4:
$I=2x\tan^{-1}x-2\int \bigg[\large\frac{x}{t}.\large\frac{dt}{2x}\bigg]$
$\;\;=2x\tan^{-1}x-\int \large\frac{1}{t}$$dt$
$\;\;=2x\tan^{-1}x-\log \mid t\mid+c$
$I=2x\tan ^{-1}x-\log\mid 1+x^2\mid+c$
answered Sep 12, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App