Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function $\;\int\;e^{2x}\sin\; x$

$\begin{array}{1 1} \frac{e^{2x}}{5}[2 \sin x-\cos x]+c \\ \frac{e^{2x}}{5}[2 \sin x-\cos x]+c \\ \frac{e^{2x}}{3}[2 \sin x+\cos x]+c \\ \frac{e^{2x}}{5}[ \sin x-\cos x]+c \end{array} $

Can you answer this question?

1 Answer

0 votes
  • (i) If there are two functions u and v, such that the integral function is of the form $\int vdv,$ then we can solve it by the method of integration by parets which states $ \int udv=uv-\int vdu.$
  • (ii) $ \int \sin x dx =-\cos x +c$
  • (iii) $ \int \cos x dx =\sin x +c$
Given $I=\int e^{2x}\sin x dx$
Clearly the integral function is of the form $\int udv=uv-\int vdu$
Let us take $a=e^{2x}$
on differentiating w.r.t.x $du=2e^{2x}$
Let $dv=\sin x dx$
on integrating,$v=-\cos x$
Now substituting for u,v,du and dv we get.
$\int e^{2x}sin x dx=e^{2x}(-\cos x)-2\int (-\cos x)e^{2x}dx$
$=(-e^{2x}-\cos x+2\int e^{2x} (-\cos x)dx$ ____(1)
Again this is of the form $I_1=\int udv.\;where\; I_1= \int e^{2x}\cos x dx$
Let $ e^{2x}=u$
on differentiating w.r.t.x $2e^{2x}=du$
Let $dv=\cos x dx$
On integrating ,$ v=\sin x$
Now sustituting for u,v,du and dv we get,
$I_1=2[(e^{2x}\sin x)-\int \sin x.(2e^{2x})]dx$
$\qquad=2[e^{2x}\sin x-2\int e^{2x}\sin x.dx]$
But $\int e^2x\sin x dx=I$
Hence $I_1=e^{2x}\sin x -2I$
Now substituting this value for $I_1$ in equ(1)
$I=-e^{2x}\cos x +2 e^{2x}\sin x -4I.$
=>$sI=2e^{2x}\sin x-e^{2x}\cos x $
Taking $e^{2x}$ as the common factor,
$I=\large\frac{e^{2x}}{5}[2 \sin x-\cos x]+c$


answered Feb 6, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App