logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function $\;\int\;e^{2x}\sin\; x$

$\begin{array}{1 1} \frac{e^{2x}}{5}[2 \sin x-\cos x]+c \\ \frac{e^{2x}}{5}[2 \sin x-\cos x]+c \\ \frac{e^{2x}}{3}[2 \sin x+\cos x]+c \\ \frac{e^{2x}}{5}[ \sin x-\cos x]+c \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • (i) If there are two functions u and v, such that the integral function is of the form $\int vdv,$ then we can solve it by the method of integration by parets which states $ \int udv=uv-\int vdu.$
  • (ii) $ \int \sin x dx =-\cos x +c$
  • (iii) $ \int \cos x dx =\sin x +c$
Given $I=\int e^{2x}\sin x dx$
 
Clearly the integral function is of the form $\int udv=uv-\int vdu$
 
Let us take $a=e^{2x}$
 
on differentiating w.r.t.x $du=2e^{2x}$
 
Let $dv=\sin x dx$
 
on integrating,$v=-\cos x$
 
Now substituting for u,v,du and dv we get.
 
$\int e^{2x}sin x dx=e^{2x}(-\cos x)-2\int (-\cos x)e^{2x}dx$
 
$=(-e^{2x}-\cos x+2\int e^{2x} (-\cos x)dx$ ____(1)
 
Again this is of the form $I_1=\int udv.\;where\; I_1= \int e^{2x}\cos x dx$
 
Let $ e^{2x}=u$
 
on differentiating w.r.t.x $2e^{2x}=du$
 
Let $dv=\cos x dx$
 
On integrating ,$ v=\sin x$
 
Now sustituting for u,v,du and dv we get,
$I_1=2[(e^{2x}\sin x)-\int \sin x.(2e^{2x})]dx$
 
$\qquad=2[e^{2x}\sin x-2\int e^{2x}\sin x.dx]$
 
But $\int e^2x\sin x dx=I$
 
Hence $I_1=e^{2x}\sin x -2I$
 
Now substituting this value for $I_1$ in equ(1)
 
$I=-e^{2x}\cos x +2 e^{2x}\sin x -4I.$
=>$sI=2e^{2x}\sin x-e^{2x}\cos x $
 
Taking $e^{2x}$ as the common factor,
 
$I=\large\frac{e^{2x}}{5}[2 \sin x-\cos x]+c$

 

answered Feb 6, 2013 by meena.p
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...