(9am to 6pm)

Ask Questions, Get Answers

Want help in doing your homework? We will solve it for you. Click to know more.
Home  >>  CBSE XII  >>  Math  >>  Integrals

Integrate the function $\;\int\;\frac{xe^x}{(1+x)^2}$

1 Answer

Need homework help? Click here.
  • $\int e^x\{f(x)+f'(x)\}dx=e^xf(x)+c.$
Given $I=\int\frac {xe^x}{(1+x)^2}dx=\int e^x\begin{bmatrix}\frac{x}{(1+x)^2}\end{bmatrix}dx.$.
Add and subtract 1 to the numerator,
$I=\int e^x\begin{bmatrix}\frac{x+1-1}{(1+x)^2}\end{bmatrix}dx.$
Now separating the terms we get,
$I=\int e^x\begin{bmatrix}\frac{1}{(1+x)}-\frac{1}{(1+x)^2}\end{bmatrix}dx.$
Clearly here f(x)=$\frac{1}{(1+x)}$ and $f'(x)=\frac{-1}{(1+x)^2}$.
So $\int e^x\begin{bmatrix}\frac{1}{1+x}-\frac{1}{(1+x)^2}\end{bmatrix}=e^x\big(\frac{1}{1+x}\big)+c.$


answered Feb 11, 2013 by sreemathi.v