Email
logo

Ask Questions, Get Answers

X
 
Questions  >>  CBSE XII  >>  Math  >>  Integrals
Answer
Comment
Share
Q)

Integrate the function $\;\int\;\frac{xe^x}{(1+x)^2}$

1 Answer

Comment
A)
Need homework help? Click here.
Need revision notes? Click here.
Toolbox:
  • $\int e^x\{f(x)+f'(x)\}dx=e^xf(x)+c.$
Given $I=\int\frac {xe^x}{(1+x)^2}dx=\int e^x\begin{bmatrix}\frac{x}{(1+x)^2}\end{bmatrix}dx.$.
 
Add and subtract 1 to the numerator,
 
$I=\int e^x\begin{bmatrix}\frac{x+1-1}{(1+x)^2}\end{bmatrix}dx.$
 
Now separating the terms we get,
 
$I=\int e^x\begin{bmatrix}\frac{1}{(1+x)}-\frac{1}{(1+x)^2}\end{bmatrix}dx.$
 
Clearly here f(x)=$\frac{1}{(1+x)}$ and $f'(x)=\frac{-1}{(1+x)^2}$.
 
So $\int e^x\begin{bmatrix}\frac{1}{1+x}-\frac{1}{(1+x)^2}\end{bmatrix}=e^x\big(\frac{1}{1+x}\big)+c.$

 

Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
...