Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function $\;\int\;(x^2+1)\;log\;x$

$\begin{array}{1 1}\log x (x+\large \frac{x^3}{3})-\large\frac{x^3}{9}-x+c \\ \log x (x-\large \frac{x^3}{3})+\large\frac{x^3}{9}-x+c \\ \log x (x+\large \frac{x^4}{3})-\large\frac{x^4}{9}-x+c \\ \log x (x+\large \frac{x^2}{3})-\large\frac{x^2}{4}-x+c \end{array} $

Can you answer this question?

1 Answer

0 votes
  • (i)When there are two functions u and v and if they are of the form $\int u dv,$then we can solve it by the method of integration by parts\[\int udv=uv-\int vdu\]
  • (ii)$\frac{d}{dx}(log x)=\frac{1}{x}.$
  • (iii)$\int x^ndx=\frac{x^{n+1}}{n+1}+c.$
Given $I=\int (x^2+1)log x.$
Clearly the given integral function is of the form $\int u dv$
Let u=log x.On differentiating with respect to x,
Let $dv=(x^2+1)dx$,On integrating we get,
Now substituting for u,v,du and dv we get,
$\int (x^2+1)log x=(log x)(\frac{x^3}{3}+x)-\int(\frac{x^3}{3}+x).\frac{1}{x}dx.$
On cancelling the common terms,
$I=(log x)\frac{^3}{3}+x)-\frac{1}{3}\int x^2dx-\int dx.$
$\;\;\;=(log x)(\frac{x^3}{3}+x)-\frac{1}{3}.\frac{x^3}{3}-x+c.$
$\;\;\;=(log x)(\frac{x^3}{3}+x)-\frac{x^3}{9}-x+c.$


answered Feb 11, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App