Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Is the function f defined by $f(x) = \left\{\begin{array}{l l} x, & \quad \text{if $x$ \( \leq \) 1}\\ 5, & \quad \text{if $x$ > 1}\\ \end{array} \right.$ continuous at $(x = 0)$? At $(x = 1)$? At $(x = 2)$?

$\begin{array}{1 1} \text{Yes, continuous at x = 0 ,1 and 2}\\ \text{Yes, continuous at x = 0 and 1 and discontinuous at x = 2} \\ \text{Yes, continuous at x = 1 and 2 and discontinuous at x = 0} \\ \text{Yes, continuous at x = 0 and 2 and discontinuous at x = 1} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • If $f$ is a real function on a subset of the real numbers and $c$ be a point in the domain of $f$, then $f$ is continuous at $c$ if $\lim\limits_{\large x\to c} f(x) = f(c)$.
Step 1:
At $x=0$
$\lim\limits_{\large x\to 0}f(x)=\lim\limits_{\large x\to 0^-}x=0$
$\lim\limits_{\large x\to 0}f(x)=\lim\limits_{\large x\to 0^+}x=0$
$f$ is continuous at $x=0$
Step 2:
At $x=1$
$\lim\limits_{\large x\to 1^-}f(x)=\lim\limits_{\large x\to 1^-}x=1$
$\lim\limits_{\large x\to 1^+}f(x)=\lim\limits_{\large x\to 1^+}x=5$
$\lim\limits_{\large x\to 1^-}f(x)\neq\lim\limits_{\large x\to 1^+}f(x)$
$f$ is discontinuous at $x=1$
Step 3:
At $x=2$
$\lim\limits_{\large x\to 2}f(x)=5$
$f$ is continuous at $x=2$
answered May 27, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App