Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

If $\alpha,\beta $ are real and $z$ is complex number and $z^2+\alpha z +\beta=0$ has two distinct roots on the line $R_e z=1,$ then the values of $\beta$=?

(A) $\beta\in (0,1)$ (B) $\beta\in (-1,0)$ (C) $\beta\in (1,\infty)$ (D) $\beta\in (-1,1)$
Can you answer this question?

1 Answer

0 votes
  • If the roots of $ax^2+bx+c=0$ are distinct and complex, then Discriminent $D<0$
  • $D=b^2-4ac$
Given: $z^2+\alpha z+\beta=0$has rwo distinct roots on $R_ez=1$
and $z$ is complex
Roots of the eqn., $z=\large\frac{-\alpha \pm\sqrt{\alpha^2-4\beta}}{2}$
since z is complex, $D=\alpha^2-4\beta<0$
Also given that $R_ez=1$, $\large-\frac{\alpha}{2}=1$
$\Rightarrow\:\beta\in (1,\infty)$
answered Jul 18, 2013 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App