Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Integrals

Integrate the function\[\frac{x\cos^{-1}x}{\sqrt{1-x^2}}\]

$\begin{array}{1 1} -[\cos^{-1}x\sqrt{1-x^2}+x]+c \\ [\cos^{-1}x\sqrt{1+x^2}+x]+c \\-[\cos^{-1}x\sqrt{1-x^2}-x]+c \\ [\cos^{-1}x\sqrt{1+x^2}-x]+c \end{array} $

1 Answer

  • (i)When there are two functions u and v and if they are of the form $\int u dv,$then we can solve it by the method of integration by parts\[\int udv=uv-\int vdu\]
  • (ii)Method of substitution $\int f(x)dx,$ if we substitute f(x) as t,then $f'(x)dx=dt$ hence the integral function becomes $\int t.dt$
  • (iii)$\frac{d}{dx}\cos^{-1}x)=\frac{-1}{\sqrt{1-x^2}}.$
Given $ I=\frac{x\cos^{-1}x}{\sqrt{1-x^2}}dx.$
Clearly the given integral function is of the form $\int u dv$,so let us follow the method of integration by parts
Let $u=\cos{-1}x.$
Differentiating with respect to x we get
Let $dv=\frac{x}{\sqrt{1-x^2}}dx.$
This can be integrated by the method of substitution
Let $(1-x^2)=t.$
On differentiating we get
$\Rightarrow xdx=\frac{-dt}{2}.$
Now substituting t and dt
$\int dv=\frac{-1}{2}\int\frac{dt}{\sqrt t}.$
On integrating we get
v=$\frac{-1}{2}(\sqrt t).$
Substituting for t we get
Now substituting for u,v,du and dv we get,
On canceling the common terms,


answered Feb 10, 2013 by sreemathi.v
edited Jul 21, 2013 by balaji.thirumalai
Download clay6 mobile appDownload clay6 mobile app