Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function\[(\sin^{-1}x)^2\]

$\begin{array}{1 1} x(\sin^{-1}x)^2-2[x-\sin^{-1}x\sqrt{1-x^2}]+c \\ (\sin^{-1}x)^2-2[x-\sin^{-1}x\sqrt{1-x^2}]+c \\ x(\sin^{-1}x)^2+2[x+\sin^{-1}x\sqrt{1-x^2}]+c \\ (\sin^{-1}x)^2-[x-\sin^{-1}x\sqrt{1-x^2}]+c \end{array} $

Can you answer this question?

1 Answer

0 votes
  • (i)When there are two functions u and v and if they are of the form $\int u dv,$then we can solve it by the method of integration by parts\[\int udv=uv-\int vdu\]
  • (ii)$\frac{d}{dx}(x^2)=2x.$
  • (iii)$\sin xdx=-\cos x+c.$
Given $I=\int(\sin^{-1}x)^2dx.$
Let us substitute $\sin^{-1}x=t.$
Since $\sin^{-1}x=t.\Rightarrow x=\sin t.$
On differentiating with respect to x we get
$dx=\cos t.dt.$
On substituting in I we get
$I=\int t^2\cos t dt.$
Clearly the given integral function is of the form $\int u dv$,so let us follow the method of integration by parts
Let u=$t^2$,on differentiating we get
Let dv=$\cos tdt$.
On integrating we get,
v=sin t.
Now substituting for u,v,du and dv we get,
$i=t^2\sin t.-\int\sin t.2tdt.$
$I=t^2\sin t-2\int t\sin t.dt$-------(1)
Again $\int t\sin t.dt$ is of the form $\int udv.$
Let us have this as $I_1$.
Therefore $I_1=\int t\sin tdt.$
Let u=t.On differentiating with respect to t
Let dv=sint dt,on integrting we get
v=-cos t.
Therefore $I_1=-t\cos t-\int(-\cos t)dt.$
$\qquad\qquad=-t\cos t+\int\cos t.dt.$
On integrating we get,
$I_1=-t\cos t+\sin t.$
Now substituting we get,
$I=t^2\sin t-[-2t\cos t+2\sin t+c].$
$\;\;\;=t^2\sin t+2t\cos t-2\sin t+c.$
But we know $\cos t=\sqrt{1-\sin^2t}$,hence
$I=t^2\sin t+2t\sqrt{1-\sin^2t}-2\sin t+c.$
Now substituting back for t we get,


answered Feb 10, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App