Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function\[x\;log2x\]

$\begin{array}{1 1} \frac{x^2 \log 2x}{2}-\frac{x^2}{4}+c \\ \frac{x^2 \log 2x}{2}+\frac{x^2}{4}+c \\ \frac{x\log 2x}{2}-\frac{x^2}{4}+c \\ \frac{x \log 2x}{2}+\frac{x}{4}+c \end{array} $

Can you answer this question?

1 Answer

0 votes
  • (i)When there are two functions u and v and if they are of the form $\int u dv,$then we can solve it by the method of integration by parts\[\int udv=uv-\int vdu\]
  • (ii)$\int\frac{1}{x}dx=log x+c.$
Given $I=\int xlog 2xdx.$
Clearly the given integral function is of the form $\int u dv$,so let us follow the method of integration by parts where \[\int udv=uv-\int vdu\]
Let u=log 2x.
On differentiating with respect to x,
let dv=x dx.
On integrating we get,
On substituting for u,v,du and dv we get,
$\int xlog 2xdx=(log 2x.\frac{1}{x^2})-\int\frac{x^2}{2}.\frac{1}{x}dx.$
On cancelling x we get
$I=\frac{x^2log 2x}{2}-\frac{1}{2}\int x dx.$
On integrating we get,
$\int xlog 2xdx=\frac{x^2log 2x}{2}-\frac{x^2}{4}+c.$


answered Feb 8, 2013 by sreemathi.v
edited Feb 8, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App