Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Integrals

Integrate the function\[x\;log2x\]

$\begin{array}{1 1} \frac{x^2 \log 2x}{2}-\frac{x^2}{4}+c \\ \frac{x^2 \log 2x}{2}+\frac{x^2}{4}+c \\ \frac{x\log 2x}{2}-\frac{x^2}{4}+c \\ \frac{x \log 2x}{2}+\frac{x}{4}+c \end{array} $

1 Answer

  • (i)When there are two functions u and v and if they are of the form $\int u dv,$then we can solve it by the method of integration by parts\[\int udv=uv-\int vdu\]
  • (ii)$\int\frac{1}{x}dx=log x+c.$
Given $I=\int xlog 2xdx.$
Clearly the given integral function is of the form $\int u dv$,so let us follow the method of integration by parts where \[\int udv=uv-\int vdu\]
Let u=log 2x.
On differentiating with respect to x,
let dv=x dx.
On integrating we get,
On substituting for u,v,du and dv we get,
$\int xlog 2xdx=(log 2x.\frac{1}{x^2})-\int\frac{x^2}{2}.\frac{1}{x}dx.$
On cancelling x we get
$I=\frac{x^2log 2x}{2}-\frac{1}{2}\int x dx.$
On integrating we get,
$\int xlog 2xdx=\frac{x^2log 2x}{2}-\frac{x^2}{4}+c.$


answered Feb 8, 2013 by sreemathi.v
edited Feb 8, 2013 by sreemathi.v