logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

If $z\:\:and\:\:w$ are two non zero complex numbers such that $|zw|=1$ and $Arg(z)-Arg(w)=\large\frac{\pi}{2},$ then $\overline z w$ = ?

Can you answer this question?
 
 

1 Answer

0 votes
Let $z=r_1(cos\theta_1+isin\theta_1)$ and
$w=r_2(cos\theta_2+isin\theta_2)$
$\Rightarrow\:|z|=r_1,\:|w|=r_2,\:arg(z)=\theta_1,\:and\:arg(w)=\theta_2$
Given:$|zw|=r_1r_2=1$ and $\theta_1-\theta_2=\large\frac{\pi}{2}$
$\overline z=r(cos\theta_1-isin\theta_1)$
$=r_1(cos(-\theta_1)+isin(-\theta_1))$
$arg(\overline z)=-\theta_1$
$\Rightarrow\:\overline z w=r_1r_2(cos(-\theta_1+\theta_2)+isin(-\theta_1+\theta_2))$
$=1(cos(-\large\frac{\pi}{2})$$+isin(-\large\frac{\pi}{2}))$
$=-i$
answered Jul 23, 2013 by rvidyagovindarajan_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...