Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function\[x\;\sin3x\]

Can you answer this question?

1 Answer

0 votes
  • (i)Let us consider two functions u and v and if they are of the form $\int u dv,$then we can solve it by the method of integration by parts\[\int udv=uv-\int vdu\]
  • (ii)$\sin axdx=\frac{-1}{a}\cos ax+c.$
  • (iii)$\int\cos axdx=\frac{1}{a}\sin ax+c.$
Given $I=\int x\sin 3xdx.$
Clearly the given integral function is of the form $\int u dv$,so let us follow the method of integration by parts where \[\int udv=uv-\int vdu\]
Let u=x.
On differentiating we get
Let $dv=\sin 3xdx.$
On integrating on both sides we get
$v=\frac{-1}{3}\cos 3x.$
Hence on substituting for u.v.dv and du,we get
$\int x\sin 3xdx=(x)\big(\frac{-1}{3}\sin 3x\big)-\int\frac{1}{-3}\sin 3xdx.$
On multiplying the symbols we get
$\;\;\;=\big(\frac{-x}{3}\sin 3x\big)+\frac{1}{3}\int \cos 3xdx.$
$\;\;\;=\big(\frac{-x}{3}\sin 3x)+\frac{1}{3}\frac{\sin 3x}{3}+c.$
$\;\;\;=\frac{-x}{3}\sin 3x+\frac{1}{9}\sin 3x+c.$


answered Feb 8, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App