Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Using the fact that \(\sin (A + B) = \sin A \cos B + \cos A \sin B\) and the differentiation, obtain the sum formula for cosines.

Can you answer this question?

1 Answer

0 votes
  • $\cos (A + B) = \cos A \cos B - \sin A \sin B$
Step 1:
$\sin (A + B) = \sin A \cos B + \cos A \sin B$------(1)
Consider A and B as functions of $t$ and differentiating both sides of (1) with respect to $t$ we have
$\cos(A+B)\big(\large\frac{dA}{dt}+\frac{dB}{dt}\big)=$$\begin{bmatrix}\sin A(-\sin B)\large\frac{dB}{dt}+\normalsize\cos B\cos A\large\frac{dA}{dt}\end{bmatrix}$+$\begin{bmatrix}\cos A\cos B\large\frac{dB}{dt}\normalsize+\sin B(-\sin A)\large\frac{dA}{dt}\end{bmatrix}$
$\Rightarrow \cos(A+B)\big(\large\frac{dA}{dt}+\frac{dB}{dt}\big)$
Step 2:
We know that $\cos (A + B) = \cos A \cos B - \sin A \sin B$
$\Rightarrow (\cos A \cos B - \sin A \sin B)\big(\large\frac{dA}{dt}+\frac{dB}{dt}\big)$
$\Rightarrow \cos(A+B)\big(\large\frac{dA}{dt}+\frac{dB}{dt}\big)$=$(\cos A \cos B - \sin A \sin B)\big(\large\frac{dA}{dt}+\frac{dB}{dt}\big)$
$\Rightarrow\cos (A + B) = \cos A \cos B - \sin A \sin B$
answered May 15, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App