Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Integrals

Choose the correct answer in $\Large \int \normalsize\frac{\large dx}{\large x(x^2+1)}$equals

$\begin{array}{1 1}(A)log \mid x \mid-\frac{1}{2}log(x^2+1)+C &(B)log \mid x \mid+\frac{1}{2}log(x^2+1)+C\\(C)-log \mid x \mid+\frac{1}{2}log(x^2+1)+C &(D)\frac{1}{2}log \mid x \mid+log(x^2+1)+C\end{array} $

1 Answer

  • $\;$(i)If the given function is a rational function of the form $\frac{px+q}{(x+a)(x^2+b)}$,then it can be resolved into its partial function as $\frac{A}{(x+a)}+\frac{Bx+c}{(x^2+b)}.$
  • $\int\frac{dx}{x}=log |x|+c.$
Given $I=\int\frac{dx}{x(x^2+1)}dx.$
$\frac{1}{x(x^2+1)}$ can be resolved as $\frac{A}{x}+\frac{Bx+C}{x^2+1}.$
Hence $\frac{1}{x(x^2+1)}$ can be resolved as $\frac{A}{x}+\frac{Bx+C}{x^2+1}.$
$\Rightarrow A(x^2+1)+(Bx+C)x=1.$
To find the values of A and B,let us equate the coefficients of like terms.
Equating the coefficients of $x^2$
Equating the coefficients of $x$
Equating the constant terms
On solving equ(1),equ(2) and equ(3) we get the values of A,B,C
Since A=1,substitute for A in equ(1)
A+B=0$\Rightarrow 1+B=0$
Hence A=1,B=-1 and C=0.
Substitute for A and B we get
This implies integration of I is
On separating the terms we get
On integrating,
Put $x^2+1=t.$
On differentiating we get
2xdx=dt.$\Rightarrow xdx=\frac{dt}{2}.$
Substituting for t and dt we get
Substituting for t we get
Hence A is the correct answer.


answered Feb 8, 2013 by sreemathi.v

Related questions