Given: $|z|-4=0$
$\Rightarrow\:x^2+y^2=16$ where $z=x+iy$
$|z-i|-|z+5i|=0$
$\Rightarrow\:|x+i(y-1)|-|x+i(y+5)|=0$
$\Rightarrow\:x^2+(y-1)^2=x^2+(y+5)^2$
$\Rightarrow\:12y+24=0$
$\Rightarrow\:y=-2$ and
$x^2=16-4=12$
$\Rightarrow\:x=\pm2\sqrt 3$
$\Rightarrow\:z=\pm2\sqrt 3-2i$