logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Choose the correct answer in the following : let \( \overrightarrow a\) and \( \overrightarrow b\) be two unit vectors and θ is the angle between them. Then \( \overrightarrow a\ + \overrightarrow b\) is a unit vector if

\[ \begin{array} (A)\; \theta = \frac{\pi}{4} \quad & (B)\; \theta = \frac{\pi}{3} \quad & (C) \;\theta = \frac{\pi}{2} \quad &(D) \;\theta = \frac{2\pi}{3} \end{array} \]
Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\overrightarrow a.\overrightarrow b=|\overrightarrow a||\overrightarrow b|\cos\theta$
  • $\overrightarrow a.\overrightarrow b=\overrightarrow b.\overrightarrow a$
  • If $\cos\theta<0$ then $\theta$ lies in the II quadrant (i.e)$(\pi-\theta)$
Step 1:
Given $|\overrightarrow a|=1$ and $|\overrightarrow b|=1$
$|\overrightarrow a+\overrightarrow b|=1$ or $|\overrightarrow a+\overrightarrow b|^2=1$
Let us consider $(\overrightarrow a+\overrightarrow b)^2=1$
(i.e) $(\overrightarrow a+\overrightarrow b)(\overrightarrow a+\overrightarrow b)=|\overrightarrow a|^2+|\overrightarrow b|^2+\overrightarrow a.\overrightarrow b+\overrightarrow b.\overrightarrow a.$
But $\overrightarrow a.\overrightarrow b=\overrightarrow b.\overrightarrow a$
Therefore $(\overrightarrow a+\overrightarrow b)(\overrightarrow a+\overrightarrow b)=|\overrightarrow a|^2+|\overrightarrow b|^2+2\overrightarrow a.\overrightarrow b=1.$
Step 2:
But $|\overrightarrow a|=|\overrightarrow b|=1$
$1^2+1^2+2\times 1\times 1\cos\theta=1$
$2+2\cos\theta=1$
$2(1+\cos\theta)=1$
$(1+\cos\theta)=\large\frac{1}{2}$
Therefore $\cos\theta=-\large\frac{1}{2}$
Step 3:
If $\cos\theta$ is negative,then it lies in the II quadrant.
$\cos(\pi-\large\frac{\pi}{3})=-\large\frac{1}{2}$
$\theta=\large\frac{2\pi}{3}$
Hence D is the correct option.
answered May 24, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...